
16 The Delphi Magazine Issue 47

Beating the System:
Deciphering The DCU, Part 2
by Dave Jewell

As you will know, last month’s
Beating the System was an

introductory article on the inter-
nals of the DCU file format. This
time round, without further ado,
we’ll carry on right where we left
off. In this month’s column, I’ll give
you the source code for a very
simple Delphi unit, and we’ll then
work through some of the bits and
bytes in the resulting DCU file. I
should mention that throughout
this article I’ll be using the Delphi 2
compiler (no, I’ve not gone all retro
on you, it’s just easier for me to
show you what’s going on with
Delphi 2 DCU files!), but, as I indi-
cated last time round, you’ll find
that the DCU files produced by
later versions have the same over-
all structure.

A Very Basic DCU File
For reasons that will become obvi-
ous later, we’re going to begin by
looking at the innards of a very
simple unit. Try typing in the fol-
lowing code and compile it into a
DCU using the Delphi 2 compiler:

unit Squit;
interface
const
SomeNumber = $55AA;

implementation
end.

Next, create a hexadecimal dump
of the DCU file. Once done, you
should see something like Figure 1.

As you can see, the file begins
with the D2Magic signature (see last
month’s article for an explanation
of the various signatures) and ends
with the Tag_End byte, value $61. I
won’t give a blow by blow account
of the file structure that we’ve
already discussed (highlighted in
the hexadecimal dump in Figure 1)
because you had that last month.
Rather, let’s cut straight to the
chase by starting with the byte at
location $0C.

It just so happens that the zero
byte here is a peculiarity of Delphi
2 DCU files. The Delphi 2 compiler
always writes a string to this
location, and that string is always
empty! Therefore, you can guaran-
tee that if the signature is D2Magic,
then the byte at location $0C
should be zero. If it isn’t, then
you’ve got a corrupt file. This
empty string was only ever present
in Delphi 2, and disappeared
in subsequent versions of the
compiler.

If you look at Listing 1, you’ll see
how I’ve modified last month’s
code to cater for this. The FoundOne
routine now reads 16 bytes from
the beginning of each file, and
performs a special check for
Delphi 2 signatures. If it’s dealing
with a Delphi 2 DCU file, then the
byte at location $0C in the file
(corresponding to the low byte of
the fourth entry in the Magic array)
is checked to see if it’s zero. If it is
not zero, then the program dis-
plays a message identifying the
invalid DCU file and doesn’t add
this file to the list of available DCUs
in the TListView control.

The DFK Tag Quartet
The next byte, $70, is another
record tag, just like Tag_End. It’s
defined like this:

const
Tag_DFK_Source = $70;

In case you are wondering if I’m
making up these identifier names
(Tag_End, Tag_DFK_Source etc), the
answer is that I’m not! These are
the real identifier names you'd see
in the actual source code for the
Delphi compiler (which, inciden-
tally, is written in C). The only
reason that I've seen these names
is because I've poked around
inside several versions of
DCC32.EXE, some of which were
debug builds containing some
debugging code. I can promise you
that I have never seen a shred of
Borland's compiler source.

22A2:0000 48 53 50 50 90 00 00 00-3D A5 C2 26 00 70 09 73 HSPP....=%B&.p.s
22A2:0010 71 75 69 74 2E 70 61 73-29 A3 C2 26 00 64 06 53 quit.pas)#B&.d.S
22A2:0020 79 73 74 65 6D 00 00 00-00 63 25 0A 53 6F 6D 65 ystem....c%.Some
22A2:0030 4E 75 6D 62 65 72 8A 33-7E 45 D9 02 00 53 AD 02 Number.3~EY..S-.
22A2:0040 28 05 53 71 75 69 74 80-00 00 00 00 00 02 04 63 (.Squit........c
22A2:0050 44 00 04 00 06 00 FB FF-03 0C 40 00 00 00 44 00 D.....{...@...D.
22A2:0060 08 00 06 0F 00 00 00 80-0F FF FF FF 7F 00 6C 02 l.
22A2:0070 C3 6D 04 00 03 06 02 04-06 90 02 16 00 91 02 02 Cm..............
22A2:0080 18 00 92 00 93 00 00 94-04 06 20 00 00 00 00 61a

➤ Figure 1

procedure TForm1.FoundOne (const PathName: String);
var
eof: Byte;
S: String;
Valid: Boolean;
fs: TFileStream;
Item: TListItem;
Magic: array [0..3] of LongInt;

begin
fs := TFileStream.Create (PathName, fmOpenRead);
try
fs.Read (Magic, sizeof (Magic));
fs.Position := fs.Size - 1;
fs.Read (eof, sizeof (eof));
Valid := (Magic [1] = fs.Size) and (eof = Tag_End);
if (Magic [0] = D2Magic) and ((Magic [3] and $ff) <> 0) then begin
ShowMessage (PathName + ' is invalid Delphi2 DCU. Skipping...');
Valid := False;

end;
... etc ...

➤ Listing 1

July 1999 The Delphi Magazine 17

I have a strong hunch that DFK
stands for Delphi File Kind, and
thus Tag_DFK_Source introduces a
record type which describes a
source file. This is indeed the case,
because (referring to the above
hex dump) we can see that the tag
byte is immediately followed by
squit.pas encoded as a Pascal
string, ie preceded by a length
byte. Conceptually, the Tag_DFK
_Source byte introduces the name
of a Pascal source file which is
required to build the current DCU
file. You might therefore be for-
given for thinking that there will
only be one of these particular tags
per DCU file, but in fact that’s not
the case. When working with a
large Pascal unit, programmers
sometimes split the file into sev-
eral smaller files (by convention,
with file extensions of .INC) which
are included into the main Pascal
unit by using the {$I filename}
compiler directive. If you do this,
each of the .INC files will naturally
be regarded as an essential source
file by the compiler, and each of
these files will be referenced
through its own Tag_DFK_Source
record. Consequently, multiple
Tag_DFK_Source records could be
present.

In practice, Pascal source files
are not the only ‘source’ files used
to create a DCU. Years ago, any
techie worth his salt wasn’t happy
unless his Pascal units included a
smattering of .OBJ files, introduced
to the compiler by using the
{$L filename} directive. As old
timers will appreciate, early ver-
sions of Turbo Pascal didn’t
include a decent inline assembler
and it was therefore often neces-
sary to include external assembler
code into Pascal units. These days,
associating an .OBJ file with a
Pascal unit is relatively uncom-
mon, but when it is done you will
find a Tag_DFK_Object record in the
DCU file for each referenced .OBJ
file.

const
Tag_DFK_Object = $71;

Much more common in Delphi is
the need to associate a .RES file
with a .DCU, this being done

through the {$R filename}. As you
will no doubt be aware, .DFM files
are merely .RES files which contain
a single, streamed, TForm resource;
Delphi form units therefore include
a compiler directive which looks
like this:

{$R *.DFM}

Given a form file called
SetupDlg.pas, this will include a
reference to the corresponding
SetupDlg.dfm file into the resulting
DCU file. As with Pascal source and
.OBJ files, another special tag is
used to indicate a resource file:

const
Tag_DFK_Resource = $72;

There is one final tag value in what
might loosely be called the ‘DFK’
tag quartet, and that’s Tag_DFK_
TheAdr. At this point, I have to con-
fess that I don’t know what this tag
represents because, at the time of
writing, I haven’t spotted one
inside a DCU file.

const
Tag_DFK_TheAdr = $73;

So let’s summarise. DCU files may
contain four different ‘DFK’ record
types, each of which represents a
dependency needed to create that
DCU file. The four record types
describe dependencies on Pascal
source files, .OBJ files, resource
files, and A N Other, where the
latter remains to be determined!
Multiple copies of the same record
type may be present in a DCU file
because a particular unit might ‘in-
clude’ multiple .INC files, multiple
.OBJ or .RES files, or whatever.

From this information, the auto-
matic make system built into
Delphi (actually, it’s built right into
the compiler DLL itself) is able to
create a dependency list of all the
files needed to manufacture the
DCU. When you attempt to run a
program from within the IDE, the
compiler looks at every DCU file in
the project, and for each DCU,
walks the list of dependencies for
that file, checking to see if the DCU
needs to be rebuilt. Of course, this
won’t always be possible (you

might not have the source code to
a particular unit), but in those
cases where the source is avail-
able, the compiler uses timestamp
information to determine whether
a particular source file is more
recent than the DCU itself. If so,
then the DCU is rebuilt.

So where does this timestamp
information come from? Each of
the four DFK record types starts
with a tag byte and, as we’ve seen,
is then followed by the name of the
source file in question. But that’s
not the end of the story. Immedi-
ately after the source filename
comes a four-byte modification
date/time which specifies when
the file was built. It’s this informa-
tion which is used to determine
whether or not the target DCU file
needs to be recompiled. Finally,
after the four-byte file modification
time is another byte (actually it’s
not necessarily a byte: see later!)
which you can think of as a file
index. It’s used to provide a file ref-
erence number by which this
source file is subsequently identi-
fied within the DCU. Thus, each of
the four DFK record types looks
conceptually like Figure 2.

Putting It Into Practice
Take a look at Listing 2 which puts
together everything that we’ve
discussed so far. This is very much
a ‘delta’ of last month’s code, but
you’ll find complete, compilable
sources on this month’s
companion disk.

Firstly, I’ve added a routine,
TreeListDblClick, which is exe-
cuted whenever you click on a dis-
played DCU pathname in the
program’s TListView. This routine
begins by making absolutely cer-
tain that a particular TListItem is
selected and, if not, exits stage left.
Next, the full pathname of the rele-
vant DCU file is retrieved from the
list item, and used to create a

Record Tag Byte

Name of source file

Modification date/time for this file

File Index

➤ Figure 2

18 The Delphi Magazine Issue 47

TFileStream object through which
the DCU file is read into memory.
Rather than messing about seeking
backwards and forwards within
the file, the entire DCU is loaded
into memory. Well, let’s face it, a
DCU file is not that enormous com-
pared to (say) a multi-megabyte
graphics file. One of the biggest
commonly encountered DCU files
is WINDOWS.DCU which weighs in at
around 400Kb: pretty small beer
for today’s modern hardware.

Once the DCU file has been
loaded into memory and the file
stream closed, the pointer p is
positioned at the start of the file, or
rather, at the start of the interest-
ing data. Here again, we check for a
Delphi 2 DCU and advance the
pointer to skip over the null byte
contained in such files. Next, the
code goes into a loop, parsing the
file one record at a time and
case-ing out on the actual record
type involved. Well, at least, that’s
the theory, but in practice we
understand very few record types
as yet. Thus, most of the time, the
program will fall through into the
else clause of the case statement,

indicating that it has found an
unknown tag value.

In fact, if you run the program as
it stands on a Delphi 3 or Delphi 4
DCU file, the code won’t even get as
far as the DCUDumpDFKRecord call. In
Delphi 2 DCU files, the ‘DFK’
records tend to immediately follow
the zero-length string byte, but in
later DCU files, they appear
somewhat later.

The idea here is that, as more
DCU tag types are identified and
documented, we’ll be able to add
more and more cases to the switch
statement. In Listing 2, the code
really only does anything worth-
while with the four DFK tags that
we’ve discussed earlier. For each
of these four possible tag values,
the DCUDumpDFKRecord method is
called. The first parameter is a
string identifying the type of
source file we’re dealing with, and
the second parameter allows us to
pass the current pointer into the
DCU image as a var parameter, the
theory being that the pointer ends
up pointing at the next record in
the DCU image ready for the next
trip round the while loop.

Moving on to DCUDumpDFKRecord,
we see that it begins by calling a

new routine called DCUReadString,
which is intended to read a
Pascal-style string from the cur-
rent place in the DCU image,
returning the string as the function
result. As with higher-level rou-
tines, the DCUReadString code is
written so as to pass the current
pointer location as a var parame-
ter, and the code has also been
written so as to do the right thing
when presented with an empty
string. Using DCUReadString, the
name of the source file is obtained
and appended to the source type
string passed as an argument to
the routine.

Next, the code used a bit of
pointer manipulation to obtain the
next four bytes as a longint, taking
care to update the pointer by four.
This long int value is passed to the
FileDateToDateTime and FormatDate
Time routines, just as we did last
month with the unit modification
time found in the DCU file header.
The result is likewise appended to
the string, S, that we’re building.
Finally, the code calls another rou-
tine, DCUDecodeNum, in order to
obtain the file index value for this
source file. The result of all this is
shown in Figure 3. Here, we’ve

function TForm1.DCUReadString (var p: PChar): String;
var
Len: Byte;

begin
Result := '';
Len := Ord (p^); Inc (p);
while Len <> 0 do begin
Result := Result + p^;
Inc (p); Dec (Len);

end;
end;
function TForm1.DCUDecodeNum (var p: PChar): Integer;
const
SizeNum: array [0..15] of Byte = (1, 2, 1, 3, 1, 2, 1, 4,
1, 2, 1, 3, 1, 2, 1, 5);

ShiftNum: array [0..15] of Byte = (25, 18, 25, 11, 25,
18, 25, 4, 25, 18, 25, 11, 25, 18, 25, 0);

var
Idx: Byte;

begin
Idx := Ord (p^) and 15;
Inc (p, SizeNum [Idx]);
Result := PLongInt (p - 4)^ shr ShiftNum [Idx];

end;
procedure TForm1.DCUDumpDFKRecord(
const Typ: String; var p: PChar);

var
s: String;
modtime: LongInt;

begin
s := Typ + ' = ' + DCUReadString (p) + #10;
try
modtime := PLongInt (p)^; Inc (p, 4);
s := s + 'ModTime = ' +
FormatDateTime('dddd, mmmm d, yyyy, hh:mm AM/PM',
FileDateToDateTime(modtime)) + #10;

except
{ Eat exceptions if modtime is invalid } ;
end;
s := s + 'File index = ' + IntToStr(DCUDecodeNum (p));
ShowMessage (s);

end;
procedure TForm1.TreeListDblClick(Sender: TObject);
var

Tag: Byte;
Buff, p: PChar;
Item: TListItem;
fs: TFileStream;

begin
Item := TreeList.Selected;
if Item = Nil then
Exit;

fs := TFileStream.Create (Item.Caption, fmOpenRead);
try
GetMem (Buff, fs.Size);
fs.Read (Buff^, fs.Size);

finally
fs.Free;

end;
// point at first byte of interest in DCU image
p := Buff + 12;
// Skip over Delphi 2's always-zero string
if PLongInt(Buff)^ = D2Magic then
Inc (p);

try
while True do begin
Tag := Ord (p^); Inc (p);
case Tag of
Tag_End : Exit; // All done!
Tag_DFK_Source : DCUDumpDFKRecord(

'Source File', p);
Tag_DFK_Object : DCUDumpDFKRecord(

'Object File', p);
Tag_DFK_Resource : DCUDumpDFKRecord(

'Resource File', p);
Tag_DFK_TheAdr : DCUDumpDFKRecord(

'Tag_DFK_TheAdr ????', p);
else begin
ShowMessage(Format('Unknown tag $%x', [Tag]));
Exit;

end;
end;

end;
finally
FreeMem (Buff);

end;
end;

➤ Listing 2

20 The Delphi Magazine Issue 47

clicked on the SQUIT.DCU file,
obtained by compiling the simple
unit given at the beginning of this
article, and our DCU testbed pro-
gram has displayed information
relating to the source file needed to
build this DCU file. You’ll notice
that this entry has a file index of
zero, which is what we’d expect for
the one and only source file that’s
needed.

Incidentally, if you want to verify
that things are working as I have
described, you can try adding one
or more ‘dummy’ (ie empty)
include files to the SQUIT.PAS file
using the {$I filename} compiler
directive. It really doesn’t matter
whether you put these into the
interface or implementation part of
the unit. If you now recompile the
unit (again, stick with Delphi 2 for
now) and rerun the testbed pro-
gram, you will find that information
on all of the referenced source files
is displayed, along with a file index
that increments by one each time.

Numeric Encoding
OK, what is this weird DCUDecodeNum
routine, and what do I mean when I
say that the file index field of a
DFK-type record is sort of a byte,
and sort of not?

The unit that we’ve been examin-
ing so far is, of course, trivial. All
this unit does is declare a single
constant, SomeNumber, to which I’ve
assigned an arbitrary (but easily
recognisable) value. If you were to
examine the resulting SQUIT.DCU

file with your favour-
ite debugging tool,
you might be sur-
prised to discover
that the number $55AA
does not actually
appear anywhere
within the file.
Allowing for the way
in which the Intel pro-
cessor stores num-
bers, you won’t find
$AA55 either. In fact,
with this particular
unit (compiled with
the Delphi 2 command
line compiler) you
won’t even find the
single bytes $55 or $AA
anywhere within the

DCU. So what’s going on?
The short answer, of course, is

that the aforementioned constant
has been encoded in some way.
This is not, as far as I know, a
deliberate attempt by Borland to

obfuscate the format of DCU files,
although I may well be wrong here!
Rather, the company has adopted
a technique which significantly
reduces the storage requirements
of numeric constants in many
cases. As we’ll see, DCU files are
heavily ‘number-oriented’ and by
using this technique, DCU files can
be made much more compact than
they’d otherwise be.

The file index field in DFK-type
records is a case in point. This is
actually an integer value which has
been encoded into a single byte,
thus giving a saving of three bytes.
Thus, although the file index
appears in the DCU file as a simple
byte, it’s much more accurate to
think of it as an encoded integer.
For example, if you create a unit
that includes another file, you’ll
find that (as mentioned above) the
test-bed program reports that the
second, included source file has a
file index of 1. However, if you look

➤ Figure 3: With the code modifications
provided this month, our testbed program
can correctly interpret all the information
which tells the Delphi compiler which source
files are needed to build a particular DCU file.

Free Pascal And Open Source Delphi
It is my fervent hope that by doing my best to publish what I’ve discov-
ered about the DCU file format, I will provoke others to delve even
deeper, until at some point we have a complete understanding of this
important file format. Once this is achieved, it will make it possible to
write utilities for ‘upgrading’ older DCU files to work with more
recent versions of Delphi, and a lot more besides.

Eagle-eyed readers will have no doubt spotted the fact that I’m get-
ting increasingly keen on the idea of open source software. You may
or may not be aware of the fact that a well-respected Delphi clone
called FPC (the Free Pascal Compiler) already exists, and can be used to
create programs to run on a number of different processors and archi-
tectures, including 32-bit Windows and Linux. If you haven’t encoun-
tered Free Pascal before, www.brain.uni-freiburg.de/~klaus/fpc is the
official home page where you can find out more about the compiler,
and the current state of the project. Be advised, though, that this isn’t
a particularly fast site, and if you want to download the software
(either binaries or source) then you’d be better advised to go to one of
the faster mirror sites which are linked from the FPC home page.

Because FPC is an open source project, details of the unit file format
used by this compiler are freely available (see Figure 4) and you are
positively encouraged to experiment with it, suggest enhancements
and improvements and so forth. I’m specifically mentioning the FPC
project here because it represents another good reason for getting a
better understanding of DCUs. Wouldn’t it be nice if FPC could be
modified to create DCU files compatible with Delphi? Wouldn’t it be
great if you could take an existing Delphi DCU file and translate it into
a form that was acceptable to the FPC linker? At the moment this is all
pie-in-the-sky of course, but with even Microsoft hinting at making
source code for parts of Windows freely available (it’s amazing what
concessions companies will make when the US government is closing
in for the kill!) it can surely only be a matter of time.

July 1999 The Delphi Magazine 21

at the actual bits and bytes in the
file, you’ll see that the number 1 is
encoded into a byte with the value
2! In other words, you must use the
DCUDecodeNum routine whenever an
encoded integer is present. If you
don’t, you’ll simply get nonsense
results.

The DCUDecodeNum routine itself
represents something of a descent
into madness. It contains two
arrays, SizeNum and ShiftNum. The
first array codes for the size of the
encoded data, while the second
array represents the number of
right shifts that are required in
order to obtain the decoded result.
Thus, if you imagine calling this
routine with the argument p point-
ing at a zero byte, you can see that
Idx will be set to zero. This will
cause the first entry in the SizeNum
array to be referenced, indicating
(as we’ve already discovered) that
the value zero encodes into a
single byte. The corresponding
entry in the ShiftNum array indi-
cates that we need to take the pre-
ceding four bytes, treat them as a
long integer and shift the result 25
places to the right. At first glance,
this might seem bizarre, because
there’s only one byte there in the
first place. The key point is that the
other three bytes are filled with
garbage that we’re not interested
in. By shifting 25 places to the right,
the zero byte (which started off as
the most significant byte) is shifted
all the way down to the least signifi-
cant byte, and we get a final result
of zero.

Now let’s look at the situation for
(say), the second Tag_DFK_Source
record in a DCU file. As already
indicated, the file index for this
record will be encoded with the
value 2. This gives a value of 2 for
the Idx variable, and (as before)
the pointer, p, will only be incre-
mented by a single byte. However,
since we’re shifting by 25 places
rather than by 24 (which would be
exactly 3 bytes worth) the net
effect is to not only get the most
significant byte into the least sig-
nificant position, but also to apply
an initial division of 2. Thus 2 gets
transmogrified into 1 which is what
we’d expect to be the file index
value in this case.

Figure 5 shows a quick overview
of the ‘range’ of encodable values
and the encoded byte size in each
case.

Note that this compression
scheme (for such it really is, of
course) only really breaks down
for very large numbers greater
than $10000000. In such cases,
Borland effectively use five bytes
to encode a four-byte number. The
32-bit number is placed into the
DCU file image, but preceded by a
special ‘escape’ byte ($0F) which
indicates to the DCUDecodeNum rou-
tine that the following four bytes
should be taken ‘as is’. If you work
through the DCUDecodeNum routine

once again, imagining that p is
pointing at the value $0F, you will
see what I mean: the pointer is
advanced by five bytes and no
shift is applied to the 32-bit quan-
tity following the ‘escape’ byte.

In the range $00..$7F ➜ Encodes as a single byte
In the range $80..$3FFF ➜ Encodes as a word (2 bytes)
In the range $4000..$1FFFFF ➜ Encodes as three bytes
In the range $200000..$FFFFFFF ➜ Encodes as four bytes
In the range $10000000..$FFFFFFFF ➜ Encodes as five bytes

➤ Figure 5

Don’t worry if the above leaves
you reeling, it’s not essential to an
understanding of DCU file inter-
nals. Suffice to say that numeric
constants within many different
types of DCU record are encoded
using this scheme, and that the
DCUDecodeNum routine must always
be used in such cases to recover
the original value. Interestingly,
within the actual C source code for
the compiler, the DCUDecodeNum rou-
tine is implemented as a pre-
processor macro in order to
improve performance, but that’s
one luxury we don’t have. Maybe
in Delphi 5..., but probably not.

Conclusions
This month, I’ve given you the
detailed structure of four different
types of record within a DCU file.
More importantly, I’ve structured
the testbed program into a form
whereby we can easily add new
handlers for different types of
record tags. Perhaps most impor-
tantly of all, I’ve described the
numeric encoding scheme which
is used to store numbers within a
DCU file. Next month, we’ll use this
foundation as a basis for looking at
several other types of record with
a DCU file.

In case you are wondering, after
August I will be moving onto other
topics in this column, but I shall
return to the DCU file format as and
when I (or others) have managed
to extract more useful information!

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. He can be contacted at
TechEditor@itecuk.com

➤ Figure 4: The Free Pascal
compiler is an example of
an open source Delphi
clone which will run under
Windows 32, Linux and
other platforms.
The comprehensive
documentation includes
full details on the file
format of the unit files
generated by Free Pascal.

www.itecuk.com
News, What�s Coming, Reviews...

	A Very Basic DCU File
	The DFK Tag Quartet
	Putting It Into Practice
	Numeric Encoding
	Free Pascal And Open Source Delphi
	Conclusions

